Protection of soil carbon within macro-aggregates depends on intra-aggregate pore characteristics
نویسندگان
چکیده
Soil contains almost twice as much carbon (C) as the atmosphere and 5-15% of soil C is stored in a form of particulate organic matter (POM). Particulate organic matter C is regarded as one of the most labile components of the soil C, such that can be easily lost under right environmental settings. Conceptually, micro-environmental conditions are understood to be responsible for protection of soil C. However, quantitative knowledge of the specific mechanisms driving micro-environmental effects is still lacking. Here we combined CO2 respiration measurements of intact soil samples with X-ray computed micro-tomography imaging and investigated how micro-environmental conditions, represented by soil pores, influence decomposition of POM. We found that atmosphere-connected soil pores influenced soil C's, and especially POM's, decomposition. In presence of such pores losses in POM were 3-15 times higher than in their absence. Moreover, we demonstrated the presence of a feed-forward relationship between soil C decomposition and pore connections that enhance it. Since soil hydrology and soil pores are likely to be affected by future climate changes, our findings indicate that not-accounting for the influence of soil pores can add another sizable source of uncertainty to estimates of future soil C losses.
منابع مشابه
Forms and functions of meso and micro-niches of carbon within soil aggregates.
Soil aggregates include sand/silt/clay, water, ion and organic matter contents combined with natural dry/wet (D/W) cycling alters both the formation and function of intra-aggregate pore continuity, connectivity, dead-end storage volumes, and tortuosity. Surface aggregates in the 0-5 cm depths of most soils experience from 34 to 57 D/W cycles that exceed differences in water contents >10%. Both ...
متن کاملPhysical soil architectural traits are functionally linked to carbon decomposition and bacterial diversity
Aggregates play a key role in protecting soil organic carbon (SOC) from microbial decomposition. The objectives of this study were to investigate the influence of pore geometry on the organic carbon decomposition rate and bacterial diversity in both macro- (250-2000 μm) and micro-aggregates (53-250 μm) using field samples. Four sites of contrasting land use on Alfisols (i.e. native pasture, cro...
متن کاملEffects of free atmospheric CO2 enrichment (FACE), N fertilization and poplar genotype on the physical protection of carbon in the mineral soil of a polar plantation after five years
Free air CO2 enrichment (FACE) experiments in aggrading forests and plantations have demonstrated significant increases in net primary production (NPP) and C storage in forest vegetation. The extra C uptake may also be stored in forest floor litter and in forest soil. After five years of FACE treatment at the EuroFACE short rotation poplar plantation, the increase of total soil C% was larger un...
متن کاملEffects of Land use Changes on Some Physiochemical Properties of Soil of Saman Region (Chaharmahal va Bakhtiari Province- Iran)
Objective: Soil organic carbon has been the most important soil quality measurement factors and has intense relation with soil physical, chemical and biological characteristics. Organic matter and its components are important factors of soil aggregates constitution and stability and play significant role in its structure. So, this research has been done for achieving this purpose. Methods: This...
متن کاملEffects of Land Use Changes on Some Physiochemical Properties of Soil of Saman Region (Chaharmahal Va Bakhtiari Province- Iran)
Soil organic carbon has been the most important soil quality measurement factors and has intense relation with soil physical, chemical and biological characteristics. Organic matter and its components are important factors of soil aggregates constitution and stability and play significant role in its structure.So, this research has been done for achieving this purpose. This area is arounding sa...
متن کامل